189,530 research outputs found

    Modulation of the Curie Temperature in Ferromagnetic/Ferroelectric Hybrid Double Quantum Wells

    Full text link
    We propose a ferromagnetic/ferroelectric hybrid double quantum well structure, and present an investigation of the Curie temperature (Tc) modulation in this quantum structure. The combined effects of applied electric fields and spontaneous electric polarization are considered for a system that consists of a Mn \delta-doped well, a barrier, and a p-type ferroelectric well. We calculate the change in the envelope functions of carriers at the lowest energy sub-band, resulting from applied electric fields and switching the dipole polarization. By reversing the depolarizing field, we can achieve two different ferromagnetic transition temperatures of the ferromagnetic quantum well in a fixed applied electric field. The Curie temperature strongly depends on the position of the Mn \delta-doped layer and the polarization strength of the ferroelectric well.Comment: 9 pages, 5 figures, to be published in Phys. Rev. B (2006) minor revision: One of the line types is changed in Fig.

    Quantum Dynamics for de Sitter Radiation

    Full text link
    We revisit the Hamiltonian formalism for a massive scalar field and study the particle production in a de Sitter space. In the invariant-operator picture the time-dependent annihilation and creation operators are constructed in terms of a complex solution to the classical equation of motion for the field and the Gaussian wave function for each Fourier mode is found which is an exact solution to the Schr\"odinger equation. The in-out formalism is reformulated by the annihilation and creation operators and the Gaussian wave functions. The de Sitter radiation from the in-out formalism differs from the Gibbons-Hawking radiation in the planar coordinates, and we discuss the discrepancy of the particle production by the two methodComment: LaTex 12 pages, no figure; CosPA2011, Peking Univ., Oct. 28-31, 2011; references added; to be published in International Journal of Modern Physics: Conference Serie

    Off-diagonal magnetoimpedance in field-annealed Co-based amorphous ribbons

    Full text link
    The off-diagonal magnetoimpedance in field-annealed CoFeSiB amorphous ribbons was measured in the low-frequency range using a pick-up coil wound around the sample. The asymmetric two-peak behavior of the field dependence of the off-diagonal impedance was observed. The asymmetry is attributed to the formation of a hard magnetic crystalline phase at the ribbon surface. The experimental results are interpreted in terms of the surface impedance tensor. It is assumed that the ribbon consists of an inner amorphous region and surface crystalline layers. The coupling between the crystalline and amorphous phases is described through an effective bias field. A qualitative agreement between the calculated dependences and experimental data is demonstrated. The results obtained may be useful for development of weak magnetic-field sensors.Comment: 19 pages, 6 figure

    Light Hadron Spectrum in Quenched Lattice QCD with Staggered Quarks

    Get PDF
    Without chiral extrapolation, we achieved a realistic nucleon to (\rho)-meson mass ratio of (m_N/m_\rho = 1.23 \pm 0.04 ({\rm statistical}) \pm 0.02 ({\rm systematic})) in our quenched lattice QCD numerical calculation with staggered quarks. The systematic error is mostly from finite-volume effect and the finite-spacing effect is negligible. The flavor symmetry breaking in the pion and (\rho) meson is no longer visible. The lattice cutoff is set at 3.63 (\pm) 0.06 GeV, the spatial lattice volume is (2.59 (\pm) 0.05 fm)(^3), and bare quarks mass as low as 4.5 MeV are used. Possible quenched chiral effects in hadron mass are discussed.Comment: 5 pages and 5 figures, use revtex

    Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u

    Get PDF
    The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments

    Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges

    Full text link
    We investigated the dielectric functions ϵ\epsilon(ω\omega) of Ir, Ru, Pt, and IrO2_2, which are commonly used as electrodes in ferroelectric thin film applications. In particular, we investigated the contributions from bound charges ϵb\epsilon^{b}(ω\omega), since these are important scientifically as well as technologically: the ϵ1b\epsilon_1^{b}(0) of a metal electrode is one of the major factors determining the depolarization field inside a ferroelectric capacitor. To obtain ϵ1b\epsilon_1^{b}(0), we measured reflectivity spectra of sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7 meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings to extract ϵ1b\epsilon_1^{b}(0) values. Ir, Ru, Pt, and IrO2_2 produced experimental ϵ1b\epsilon_1^{b}(0) values of 48±\pm10, 82±\pm10, 58±\pm10, and 29±\pm5, respectively, which are in good agreement with values obtained using first-principles calculations. These values are much higher than those for noble metals such as Cu, Ag, and Au because transition metals and IrO2_2 have such strong d-d transitions below 2.0 eV. High ϵ1b\epsilon_1^{b}(0) values will reduce the depolarization field in ferroelectric capacitors, making these materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table

    Recent developments in multilevel optimization

    Get PDF
    Recent developments in multilevel optimization are briefly reviewed. The general nature of the multilevel design task, the use of approximations to develop and solve the analysis design task, the structure of the formal multidiscipline optimization problem, a simple cantilevered beam which demonstrates the concepts of multilevel design and the basic mathematical details of the optimization task and the system level are among the topics discussed
    • …
    corecore